
Zeros on the temperature axis of spin correlations in a random bond Ising chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 2397

(http://iopscience.iop.org/0305-4470/24/10/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 10:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 2397-2409. Printed in the UK 

Zeros on the temperature axis of spin correlations in a random 
bond king chain 

M Nifle and H J Hilhorst 
Laboratoire de Physique Thiorique et Hautcs Energiest, BBtiment 211, UniversitC de 
Paris-Sud, 91405 Orsay, France 

Received 1 January 1991 

Abstract. We study the correlation between two spins diametncally apposite in a random 
king loop of 2r spins with random nearest-neighbour couplings. As a function of the 
inverse temperature B, this correlation undergoes random sign changes with a density 
p.(p). We determine this density foranarbitrarydistribution P ( K )  ofthecouplingconstants 
for(i) r~mand(i i) thescal ingl imitp.-m, r.-matr/B fixed.Farr.-m,thetatalnumber 
of zeros on the p-axis grows asymptotically as 

As an application, the density of zeros is calculated for the spin-spin correlation in 
a double infinite king chain with random bonds, having, with a probability p.  an infinite 
transverse coupling between each pair of corresponding sites. A connection is made with 
predictions from spin glass theory. 

1. Introduction 

We consider the most elementary of all frustrated spin systems, namely a loop of 2r 
k i n g  spins s,, s2, . . . , s2,, having random nearest-neighbour couplings K ,  , K 2 , .  . . , K,, 
distributed symmetrically around zero. Hence, the system is frustrated with probability 
2 ,  and our interest is in these frustrated loops. We shall consider a zero field spin-spin 
correlation function in this loop, and ask how, with a fixed distance between the spins, 
this quantity changes with temperature. 

In  spite of the simplicity of the system under consideration, this question is 
non-trivial. Its motivation comes from higher-dimensional systems, and we shall briefly 
describe it first. In the low-temperature phase of a spin glass, the value of the spin-spin 
correiation function, at fixed distance r, is hypersensitive to externai parameters, so 
that one may say that it varies randomly with them. This has been shown in mean-field 
theory by Parisi [l], in a Gaussian approximation around mean-field theory by Kondor 
[2], and on the basis of a droplet model approximation in finite dimensions by Fisher 
and Huse [3,4] and Bray and Moore [5]. The random temperature dependence of the 
equilibrium state is of interest for its own sake, and also because it has profound 
consequences for spin giass dynamics. As shown by Koper and Eiihorsi [6,  i j  ana by 
Fisher and Huse [8], it is in particular essential for the explanation of aging phenomena 
19-1 11 in small magnetic fields. 

t Laboratoire assacii au Centre National de la Recherche Scientifique. 
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Lack of knowledge of the precise random properties of the equilibrium correlation 
functions has recently led Koper and Hilhorst [12, 131 and the present authors [14] 
to postulate such properties and to proceed from there to study the consequences for 
the dynamics. However, it is desirable to have some exact results on the temperature 
dependence of the equilibrium correlation functions in frustrated systems. Phenomena 
that appear in the spin glass phase of a true spin glass are also expected to occur at 
low temperatures in a frustrated one-dimensional system, on a length scale less than 
the correlation length, in spite of the absence of a phase transition. 

One fundamental quantity that characterizes the random temperature dependence 
of a correlation function is its density of zeros on the temperature axis, obtained after 
averaging over all random couplings. In this work we calculate this density, called 
p, (p) ,  for the correlation (S,S,)~, at inverse temperature p, between two spins diametri- 
cally opposite on the loop. The distribution law P ( K )  of the couplings is symmetric 
in Q sufficiently smooth with P ( 0 )  # 0, but otherwise arbitrary. 

In section 2 we formulate the problem mathematically. In section 3 we first consider 
the large-r limit and find a simple and general expression for p m ( P )  in terms of averages 
with respect to P. This expression is analysed for its large-p and small-p behaviour, 
and the special case of a double-peaked Gaussian distribution is worked out. 

In sections 4 and 5 we consider p r ( p )  in the scaling limit r, p + m with r / p  constant. 
In section 4, we obtain a scaling function of the variable a rP(O)/p, for a >;. In 
section 5 ,  we study the expansion of the scaling function when a << 1 ,  and show that 
in this limit 

A physical interpretation of this limit is given. 

show that as r + m  it increases as 
In section 6 we calculate the total number of zeros of ( S ~ S , ) ~  on the p axis, and 

112 I [--A] 1 .log r. 
2 215(3) 47r 

In section 7 we discuss, as an application, the density of zeros of the correlation 
function in a double Ising chain with random intrachain couplings, and with interchain 
couplings that randomly take the values *a (each with probability i p )  or 0. 

In section 8 we indicate possible extensions of our results. We also indicate the 
relation to a quantity often considered in other works, namely the overlap length 
between two thermodynamic equilibrium states at different temperatures. 

2. A frustrated loop of king spins 

2.1. The correlafion funcfion 

We consider a loop of 2r king spins described by the Hamiltonian 

The si may take the values *I, and the 2r coupling constants Ki are identically 
distributed independent quenched random variables, with a probability law P(K;) 
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symmetric about zero. Therefore, the loop is Frustrated with probability f ,  and we are 
interested in this subclass of frustrated loops. 

We shall consider the correlation function ( S ~ S , ) ~  between two spins opposite to 
each other on the loop. Here ( . . . is the thermal average at inverse temperature ,#, 
for a fixed set {K , } .  The simplicity of this system allows one to write the explicit result 

(2.2) 

where 

T,(p) = tanh pK, (2.3) 
i = l  j a r + ,  

We wish to consider (s& as a function of temperature. 

2.2. The density of zeros of (s@& 

It is easy to see that when the loop is not frustrated, then T , ( p )  and Tz(p) ,  and hence 
(sos,)~, will be of a single sign for all p. For a frustrated chain, however, temperatures 
/3” may occur at which the correlation (sOsJp vanishes. 

These 0. are the solutions of 

L(P) = TI (PI + G ( P )  = 0. (2.4) 
Their number and their values depend on the disorder variables { K J .  We define 

p,(p)  d p  as the number of zeros in an interval d p  after averaging over all {K,}. In 
formula, 

P O )  =c= J=/w)i d P  (2 .5)  

where the overbar indicates the disorder average. From (2.3), (2.4) and (2.5), we have 

p,j@)=ii;@)G,(Q)+ i~~Qj~~(~ji~(i,~Pj+i*(P)j ji.6j 

in which 
I t r  

GLP)= Z g(PKi) (2.7) 
i=r+u 

Gi(p)= E d P & )  
/ = I  

2x 
sinh 2x g(x)=-- 

It is convenient to introduce 

P + ( K , )  = 2 P ( K , )  i fKiZO 

= O  if Kj<O.  (2.9) 

Taking into account the symmetries of the problem we can then write p @ )  as 

(2.10) 

where, here and hencefonh, the overbar indicates the average over all K j  with respect 
to the distribution P+(K:) ,  and where the extra factor f is the probability for the loop 
to be frustrated. 
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This formula will be the starting point for the analysis of section 5. Upon introducing 
another delta function it becomes 

t m  

p . ( P ) = l j  dxlxl s(x-G,(P)+G,(P))S(log T, (P ) - log  TdP)) .  (2.11) 
2P -m 

Finally, we make use of integral representations of the delta functions in (2.11). 
The 2 r  integrations on the K i  then decouple and give 2 r  identical factors, and the 
result is 

(2.12) 

where 

F(A, ~)=exp[ iAg(PK)+ iph(PK) l  (2.13) 

and 

h(x) = -log tanh x. (2.14) 

Equation (2.12) is an alternative expression for the density of zeros of the correlation 
function, which we shall use in sections 3 and 4. 

3. The limit of a large loop ( r a  1 with p constant) 

3.1. The result for general p 
It is first of interest to consider equation (2.12) in the limit r >> 1, i.e. to calculate pm(P), 
We expand (2.13) in powers of A and p, which gives 

Then we re-exponentiate and find - - - 
F(* ,  #+I = exp[i*g + iPh -t().*"002 + 2*#+-+ +2Ah2 +, , ,j (?.?) 

A f ( P K ) = f ( P K )  -fo (f = g, h ) .  (3.3) 

where 

We now use (3.2) in (2.12). The quantity IF(& p)I2' is an exponential that no longer 
contains linear terms in h and p. After introducing the scaled integration variables 
1 = A f i ,  r; = pf i ,  and 2 = x/&, one can straightforwardly expand the integrand in 
powers of I-'. The leading term is a constant independent of r. Carrying out the 
integrals, which are all Gaussian, we obtain from (2.12) 

(3.4) 

with g and h given by (2.8) and @Mj, respectiveiy. The disorder averages in (3.4j 
still depend on P. We shall consider successively the limits P >> 1 and P CC 1 in the next 
subsection. 

The result (3.4) is the first term in the large-r expansion of p , ( p ) ,  which can be 
written as 

P, (P)  = p m ( P ) + O ( r - ' ) .  (3.5) 
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3.2. Large-p and small-p limits of p,(p) 

(i) The limit p >-) 1. We perform a large-p expansion of the averages in (3.4). For an 
arbitrary function f of the variable PK, one has 

7 = Io+- dx f (x) [ P+(O) + O( i) ] 
' 0  

provided that f (x) is integrable. We obtain with the aid of (3 .3 )  and (3.7) 

(3.7) 

(3.8a) 

(3.86) 

( 3 . 8 ~ )  

We substitute (3.8) in (3.4). To leading order, the term in brackets in (3.4) is a numerical 
constant, denoted c2 henceforth, and we have 

In appendix A we have evaluated c with the result 

c 2 =  ~ ~ / ( 2 1 ~ ( 3 ) ) - $ = 0 . 1 4 0 9 8 . .  . (3.9b) 

(ii) The limit p << 1. We make the small-p expansion ofthe functions (2.8) and (2.14) 

g(PK)=  l - i (PKY 

h@K) -log OK. 

With the aid of these one finds that, to leading order, 
-2 -~ 

Ah2-log K'-logK 

Ag2=$p4(K4-K2 ) 

~ = f p * ( K ' l o g  K -?log). 

- -2 - 

Upon substituting (3 .11 )  in (3.41, one sees that 

, 0"dD) ...., = cp for p << 1 

(3.10a) 

(3.10b) 

(3.11) 

(3.12) 

where C is a constant composed of averages of powers and logarithms of K. 
The result (3.4) for pm(P), as well as the results (3.9) and (3.12) for the two limits 

p << 1 and p >> 1, hold for an arbitrary probability law P+( K )  for the coupling constants. 
In the next subsection, we shall consider a specific choice for P + ( K ) .  
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3.3. A double Gaussian distribution 

If for P ( K )  we take the sum of two Gaussians centred around + K O ,  we get for P + ( K )  

M Nife and H J Hilhorst 

In the limit of a narrow width, 

U<< 1 (3.14) 

the function pm(p)  can be calculated explicitly, as we shall now show. 
In this limit we may neglect the contribution to P+(K) of the peak at K = - K O .  

Then we make use of the saddle-point method to write the average of an arbitrary 
function G ( K )  as 

U2 U4 

2 8 
G = G ~ + -  G; +- G:" + o(2)  (3.15) 

where the subscript 0 indicates evaluation for K =KO. If H ( K )  is another arbitrary 
function,andifAG(K)=G(K)-G a n d A H ( K ) = H ( K ) - H ,  thenonederivesfrom 
(3.15) the relation 

-- 
AGAH = GH - GH 

= u2GhH~+fu4( G{Hh+ G:H:+ GAH:) + O(u6). (3.16) 

By substituting the functions g ( p K )  and h(pK) for G ( K )  and H ( K ) ,  it is possible 
to find the saddle-point expansions of all averages required in (3.4). After inserting 
these in (3.4) one finds 

(3.17) 

Using the explicit expressions (2.8) and (2.14) for g and h, respectively, one amves at 

1 sinh4pKo-4pKo 
for U<< 1, p fixed. (3.18) 

pm(P)=?% cosh4pKo-1 

For p >> 1 ,  the coefficient of U in (3.18) tends towards a constant, and hence (3.18) is 
not integrable. The reason is that the limits U<< 1 and p >> 1 do not commute. 

4. The sealing limit r, p >> 1 with r / p  constant. I 

In the sector of the (r, p)-plane where r, p >> 1 with r / p  fixed, p , ( p )  can be written 
with the help of a scaling function of the variable 01 = rP(O)/p. The starting point that 
yields this result, at least for 01 >$, is provided by equation (2.12) with equation (2.13) 
rewritten as 

(4.1) 

We expand the argument of the average in powers of l/p, using (3.8), and get after 
re-exponentiating 

F(h ,  p )  = 1 + (exp[ihg(pK) +iph(pK)]  - 1) .  
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with the scaling function SE, given by 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Two comments should be made regarding the result (4.6). 
First, the requirement that these integrals converge imposes the condition 

L Y > f  (4.7) 
as we shall show now by studying the behaviour of c(A, p). For large A and large p, 
the integrand in (4.4) oscillates rapidly in  y around an average of  f ,  until, for 
y 3 yo( A, p), it decreases exponentially to zero. The point yo is determined by 

! A ~ b ) + p W y ) l ~  1.  (4.8) 
Upon using the large y expansion of g and h, the condition (4.8) yields, to leading 
order as !AI or IpI gets large, that yo grows as 

yo(k ~~)=imax(i loglA\l , i logIpl) .  (4.9) 
Therefore 

~ ( k  ~ ) = f y o ( A \ ,  P )  (4.10) 

and the integrand in (4.6) behaves as 

(4.11) 

in the large4 and large-p limit. This gives condition (4.7). 

we perform a small-A and small-p expansion of (4.4), which gives 
Second, one can study the scaling function (4.6) in the large-a limit. To this end, 

(4.12) c(A, p) = i(coA2+ 2c,Ap + czp2) + . . . 
where 

c, = Jo+mdygn(y)h2-"(y) n = 0, 1,2. (4.13) 

After substitution of this expression in (4.6) and introduction of the scaled variables 

inverse powers of LY and integrated term by term. The integrals are all Gaussian and 
we find 

of integr&nn ,i. = A&, f i  = ;LJ;; znd J = .x;..G, ifl!egrznd C2" be expaxded in 

F+(a)=G(T) 1 c,c,-c: "= +o(i) a > > l .  (4.14) 
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This result is identical to that obtained in section 3.2, where we have first taken 
the large-r limit and then the large+ limit. 

5. The scaling limit r, p * 1 with r / p  constant. I1 

In the sector of the (r, P)-plane not covered by the preceding section, i.e. where r >> 1, 

namely 
p ;;; an: ir i;$);g <;, ihe funciion p,(pj czfi be in a similar scaiing form, 

P (5.1) 

where X ( a )  can he found as a power series in LI 
three coupling constants constants contribute to the leading order result. 

rP(O)/p. We shall show that only 

Upon using (2.3) and (2.7), the equation (2.10) takes the form 

In order to perform the &integrals implicit in (5.2), we shall use as new variables 
ofiniegraiion ihe iengihs of iiie intewais inio which iiie K;  divide iiie posiiive K-axis. 
Let these interval lenths, from left to right, be denoted A,, A2 , .  . . , A2,. Their joint 
probability density, to be called 9, can be derived from the P+(K,). Equation (5 .2)  
then becomes . r i m  r+- 

1 
P A P ) = -  J dA, . . . J dA2,9(Al, .  . . , A2,) 

2P 0 a 

X [ I E I B ( P A I ) + E ~ ~ ( P A I + P A ~ ) + .  . . I 
X ~ ~ E I ~ ( ~ A , ) + E Z ~ ( ~ A ~ + P A ~ ) + .  . .I., (5.3) 

Here the signs E~ should be taken from a set of r plus signs and r minus signs, and 
in the end one has to average over all ways of doing this, as indicated by [. . .I,,. The 
dots that occur twice inside these brackets in (5.3), indicate the 2r-2 remaining terms. 

We turn now to the limit r >> 1 and p >> 1. If A, remains of order P o  when p >> 1, 
then one may use the large-p expansion for all gs and hs  in (5.3). The delta function 
constraint in (5.3) then takes the form 

(5.4) E~ + E >  e-*oA2 + E ,  e-2@(A2+A31 + E,, e -2P(A*+A,+AJ +, , , = 0, 

Since each next term on the left-hand side of (5.4) is smaller in absolute value than 
its predecessor, the constraint can be satisfied, in the large-0 limit, only if at least A> 
and A3 are of the order 1/p. For each interval Ai which is of order lip, the phase-space 
volume in A-space will be reduced by a factor I/P. We therefore expect the leading 
contribution to (5.3) to come from 

A,, A, of order l / p  A, and A d , .  . . , A2r of order 1. ( 5 . 5 )  

If we take the limit p >> 1 subject to ( 5 3 ,  the integrand in (5.3) no longer depends on 
A, and A,, . . . ,A,, so that we only need the marginal law for A2 and A3 that follows 
from 9. In the large-r limit, these are identically distributed independent variables 
with the probability law 

P,(A;) =4rP(0).e-'"~'~'', i = 2 , 3 .  (5.6) 
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Moreover, in the case (5.51, one necessarily has 

( E I , E 2 , 4 = ( + , - , - )  or (-, +, +) (5.7) 

which carries a weight a.  The expression (5.3) can be transformed into 

PAD)=- jo+mdA2p,(A2) jo dA,p,(A3)(PA2 e-2pAa+p(A2+A,) e-2p(A2+A1') 
+m 1 

4P 

). (5 .8 )  

In order to show that p , ( P )  is of the form (5.1), we put U; = P A j  ( i = 2 , 3 ) .  Then Pp, (P)  
becomes a function only of the variable a, through the probability law 

x ~ ( 1  -e--IPA2-e-2P(A2+AJ 

p,(:) d(g)  =4a e-40u, dui i = 2 , 3  (5.9) 

We may obtain the leading order in the small-a expansion of K ( a )  by expanding 
the exponential in (5 .9 )  around a = 0, 

The next order in the small-a expansion of (5 .9)  constitutes only one out of several 
contributions to the order a' terms appearing in (5.10), as one shall see later. 

Integration on the variable uj of the leading term in (5.10) gives 

(5.11) 

After performing this last integral we obtain the final result 

712 
F-(a)=-a2 for a << 1. (5.12) 6 

A few comments are in order. 
First of all, one easily sees that if one takes, instead of (5 .5 ) ,  the interval length A4 

of order p-', one obtains a contribution to the final result that is an order a smaller 
than (5.12). 

Secondly, we have started out by taking A, of order Po. One may verify that taking 
A, of order p-' again contributes an extra factor a with respect to the leading term. 
By collecting in a similar way the relevant contributions to each order in a, it is 
possible, albeit somewhat complicated, to determine the 'small-a expansion of the 
scalingfunction $-(a). If we assume that this expansion converges for all a < f ,  we have 

for a 24 (5.13) 
1 1 

P m  =- F*(u)=-Wa) P P 
i.e. a scaling behaviour for arbitrary ratio r / P .  

The calculation of this section has a clear physical interpretation. In the low- 
temperature limit, a frustrated loop will have the frustration localized on its weakest 
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bond. When the temperature goes up, the frustration may prefer to be localized on 
the two next weakest bonds, which raises the energy but also the entropy. If these two 
bonds are not on the same semicircle connecting sites 0 and r as is the weakest bound 
(the condition ( 5 . 5 ) ) ,  then this shift of the frustration will involve the reversal of a 
string of spins including either so or s,, and result in a change of the sign of ( S ~ S , ) ~ .  

( 6 . 2 ~ )  
(6.26) 

where U is a fixed small enough number. 
The integral (6.1) can be split up  accordingly. The one on the interval a r < p  c m  

does not depend on r, as one sees upon replacing the variable of integration p by 
x = p / r .  The expression (6.1) therefore takes the form, for large r, 

N,  = j: dp pm(P). (6.3) 

We make use now of the large-p expansion of p m ( p )  given by (3.9), and integrate on 
p in (6.3). The result is that in the larger limit 

C 
N,=-log r+O(I )  (6.4) 2 T  

with c given by ( 3 . 9 ~ ) .  

i. An appiication: a frustrated doubie chain 

Exact results on correlation functions in random systems are relatively scarce compared 
with what is known about the thermodynamics of such systems. Therefore, as an 
application of the work of the preceding sections, we consider two infinite king chains 
whose spin variables, denoted {si) and {si}, respectively, are coupled by bonds of 
strengths { K i }  and {Ki) ,  respectively. Moreover, there will be couplings { J j )  between 
corresponding spins of different chains, so that the Hamiltonian is 

As before, the K i  and Ki will be identically distributed independent random 
L!-- ... :A  a..-...-...-:- A:~+-:L..+:-.. D +Lot  ennr;FII Fnr th. mnmant w ,111 a JJ 1,111, Cill lC ".J,,l"YLl"ll 1 ,.*U, "I ..II" a.". "t.'U.., 1". L... ... Y... I .... 

For the J. we postulate 
with probability p / 2  

with probability 1 - p .  
with probability p / 2  (7.2) 
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Hence, on sites i that have J. = m o r  J, = -w, we may set s, = s: or si = -SI, respectively, 
and the double chain becomes a chain of loops of different lengths (see figure 1 ) .  

Models of this kind have served before to study correlation functions in random 
systems; after the transformation sisJ = and sisi+, = qitl, ours becomes equal to a 
random field chain considered by Grinstein and Mukamel [15 ] ,  (see also [16]) ,  but 
which has, moreover, random couplings. 

The probability pI of a loop of length 21 is 

PI = p ( l  -PI1-' l = l , 2 , 3  ,.... (7 .3)  
We are interested in the correlation function of two spins far apart on the chain, 

and shall choose both of these for convenience on nodal points (sites with infinite 
interchain coupling). Let their distance be N ,  and let them be separated by L loops. 
The correlation ( S ~ S ~ ) ~  then is a product of L independent factors each coming from 
one loop. Hence, the density p,,(N; p )  of zeros of (S~S,,,)~ is obtained after a disorder 
average that may be performed in two steps: first on the couplings K i  and K J ;  and 
then on the couplings Ji. 

We consider the limit of a large number of loops, i.e. L>> 1 .  Since from (7 .3) ,  we 
have that the average interval length is l / p ,  it follows that L =  Np. We may write 

m 

p , ( N ;  P ) = N P  1 P I P I ( P )  N p  >> 1 .  ( 7 .4 )  
I = I  

In this expression p r ( p )  is the density of zeros of a loop of length I studied before. 

can then be replaced by an integral and, expanding in p, we obtain 
In the small-p limit this expression can be made more explicit. The sum in (7 .4)  

p J N ;  P ) =  Np2 /o+Ydle-pr p r ( P ) .  (7 .5 )  

The density p l ( p )  takes the two forms (6 .2)  which depend on the position of I relative 
to p. We consider the two p-intervals in (6 .2)  with r replaced by l / p ,  which is the 
characteristic value of 1. 

(i) When p<< l / p ,  the density p , ( p )  may be replaced by p m ( p ) ,  and the integration 
in (7 .5)  gives 

p J N ;  P )  = N p d P ) .  (7 .6a)  

(i) When p - l / p ,  we make use of the scaling function Y t ( l P ( O ) / p ) .  The trans- 

p ( N ;  P ) =  ~ P ~ P - ' ( O ) W P / P ( O ) )  (7 .66)  

formation x _= IP(O) /p  in (7 .5)  yields 

where 

g ( y ) =  [o+mdxS(x) eCXv. (7 .7)  

Figure 1. A chain of loops with random lengths. In the text, the correlation function of 
two wins  located on nodal sites i s  studied. 
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We can ask what is the total number Kp,N of zeros of (s0sN)@ in the double chain. 
The similarity of the equations (6.2) and (7.6) allows us to use the result (6.4) of the 
/3-integration (6.1), replacing r by l /p.  We obtain 

K =%og(l,p) pc<l ,  Np>>l  
p.N 2.x 

which shows that this number is .o"-a"a!y!ic. i" the poi"! of zero fms!ra!io", p = 0. 

8. Discussion 

As a function of the inverse temperature p, the correlation (S,S,)~ between two spins 
diame:rica!!j. opposite in a randor, !sing loop of 2 i  s@,ns, iiiidiigoes random sign 
changes with a density p, (p) .  

Several of the results concerning p, (p) ,  and announced in the introduction, could 
easily be extended to the correlation (s0sJB for spins at an arbitrary distance n. 
Furthermore, the method followed in the preceding sections could be used to calculate, 
for example, the distribution p(p ,  p ' )  of pairs of zeros. 

The density p,@) characterizes the razdoz depexdence of :he equi!ibriuz state 
of a frustrated system on the external parameters. A different characterization is 
provided by the correlation overlap function [2,4-6, 12,131 

G,(AP; P )  = ( s o s , ) p ( s o s , ) p + ~ ~  (8.1) 

and it is of interest to discuss the connection between the two. 
One expecis, in zero fieid, ihai C,(A@; pj  faiis oii io zero with increasing A@, and 

that its decay is faster as r is larger. Let Ap,(p) ,  which we shall suppose to be much 
less than p, be the characteristic scaie of this decay. (It is assumed here that such a 
scale exists, although in at least one case [2] the decay rather seems to be power-law- 
like.) We are therefore led to expect that for small Ap, 

Ap,(p)= l/,p,.(5). (8.2) 

The inverse rae of A& then is the overlap length between the two equilibrium states, 
at p and at p + A p .  

Within the droplet model, Fisher and Huse [3], and Bray and Moore [ 5 ] ,  argue 
that for small Ap 

rA6 I I A  I P V I  R I - 2 / ( d ~ - 2 ? l  (8.3) 

where - y  is the thermal exponent of the zero-temperature fixed point, d, is the fractal 
dimension of the droplet surface area, and one has d 5 - 2 y > 0 .  From (8.2) and (8.3) 
it follows that 

p,(p)  - r ( d s - 2 v 1 / 2  for r>>l .  (8.4) 

In dimension d = 1, one has d,=O and y = -1  so that p , ( p ) -  r. This is in agreement 
with what we found in the application of section I (where N plays the role of r here). 
Furthermore equation (8.4) shows that, in higher dimensions, a method of finding 
p , ( p )  as a function of r would constitute an independent way of determining the 
exponent d ,  - 2y. 
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Appendix. Derivation of (3.96) 

From (3.4) and (3.8) we obtain 

where, using (2.14) for h and (2.8) for g, we have 

~ . = l ~ ~ d x ( X ) " ( - I o g t a n h  sinh 2x x)'-" n = 0, 1,2. (A2) 

After transforming to the new variable of integration y = -log tanh x we find 

Y 2  7 c, = f lo" dy - = - ((3) 
sinhy 4 

where we used Gradshteyn and Ryzhik [17, p 3481. Upon integrating by parts one sees 
that 

e, = -f la+- -(log ,", tanh x)'x dx = fco, 

The coefficient c2 may be rewritten as 

(see [17, p 3521). By combining (A.1) with (A.3) one obtains (3.9). 
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